Part II: Event detection in dynamic graphs

Part II: Outline

- Overview: Events in point sequences
 - Change detection in time series
 - Learning under concept drift

- Events in graph sequences
 - Change by graph distance
 - Change by graph connectivity

Event detection

- Anomaly detection in time series of multidimensional data points
 - Exponentially Weighted Moving Average
 - CUmulative SUM Statistics
 - Regression-based
 - Box-Jenkins models eg. ARMA, ARIMA
 - Wavelets
 - Hidden Markov Models
 - Model-based hypothesis testing
 - ...
- This tutorial: time series of graphs

Part II: References (data series)

- Montgomery, D. C. <u>Introduction to Statistical Quality Control</u>. John Wiley and Sons, Inc., 2001.
- Box, George and Jenkins, Gwilym. Time series analysis: <u>Forecasting</u> and control, San Francisco: Holden-Day, 1970.
- Gama J., Medas P., Castillo G., Rodrigues P.P.: <u>Learning with Drift</u> <u>Detection</u>. SBIA 2004: 286-295.
- Grigg et al.; Farewell, VT; Spiegelhalter, DJ. <u>The Use of Risk-Adjusted CUSUM and RSPRT Charts for Monitoring in Medical</u>
 <u>Contexts</u>. Statistical Methods in Medical Research 12 (2): 147–170.
- Bay, S. D., and Pazzani, M. J., <u>Detecting change in categorical data:</u>
 <u>Mining contrast sets</u>. KDD, pages 302–306, 1999.
- M. Van Leeuwen, A. Siebes. <u>StreamKrimp: Detecting Change in Data Streams</u>. ECML PKDD, 2008.
- Wong, W.-K., Moore, A., Cooper, G. and Wagner, M. <u>WSARE: An Algorithm for the Early Detection of Disease Outbreaks</u>. JML, 2005.
- Tutorial: D. B. Neill and W.-K. Wong. <u>A tutorial on event detection</u>.
 KDD, 2009.

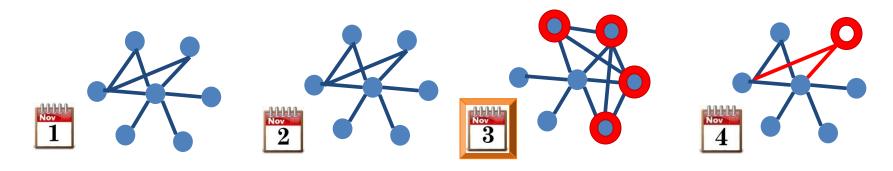
Part II: Outline

- Overview: Events in point sequences
 - Change detection in time series
 - Learning under concept drift

- Events in graph sequences
 - Change by graph distance
 - feature-based
 - structure-based
 - Change by graph connectivity

Events in time-evolving graphs

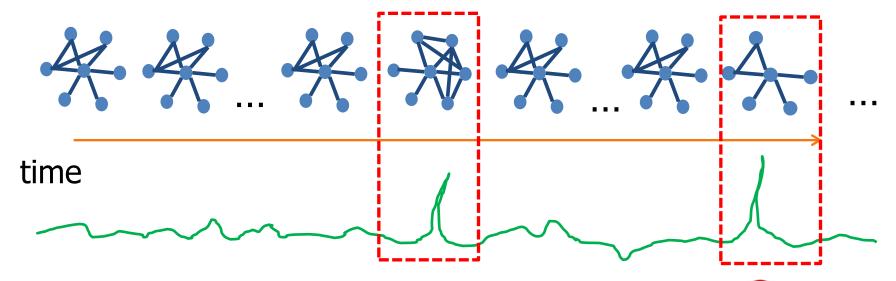
- Problem: Given a sequence of graphs,
- Q1. change detection: find time points at which graph changes significantly



Q2. attribution: **find** (top k) nodes / edges / regions that change the most

Events in time-evolving graphs

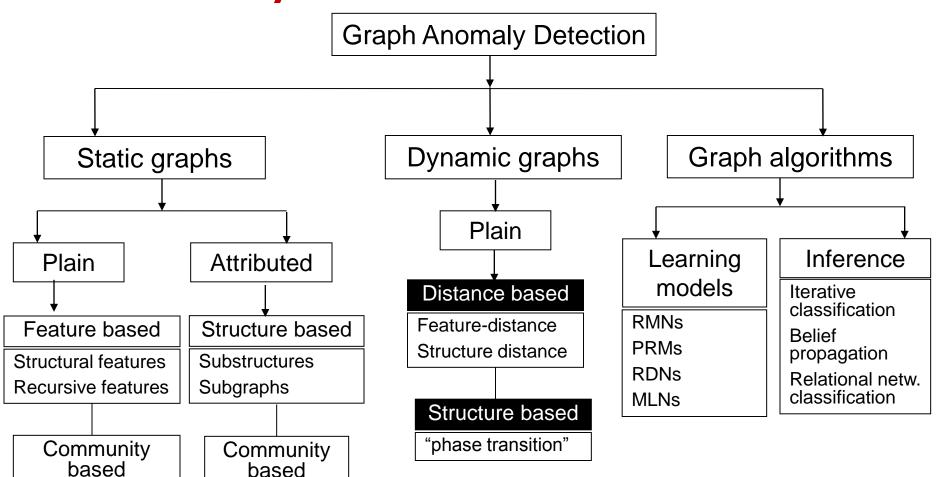
- Main framework
 - Compute graph similarity/distance scores



Find unusual occurrences in time series

*Note: scalability is a desired property

Taxonomy



■ (1) Weight distance

Shoubridge et al. '02 Dickinson et al. '04

$$d(G,H) = |E_G \cup E_H|^{-1} \sum_{u,v \in V} \frac{|w_E^G(u,v) - w_E^H(u,v)|}{\max\{w_E^G(u,v), w_E^H(u,v)\}}$$

(2) Maximumum Common Subgraph (MCS)
 Weight distance

$$d(G,H) = |E_G \cap E_H|^{-1} \sum_{u,v \in V} \frac{|w_E^G(u,v) - w_E^H(u,v)|}{\max\{w_E^G(u,v), w_E^H(u,v)\}}$$

(3) MCS Edge distance

$$d(G, H) = 1 - \frac{|\text{mcs}(E_G, E_H)|}{\text{max}\{|E_G|, |E_H|\}}$$

(4) MCS Node distance

$$d(G, H) = 1 - \frac{|\text{mcs}(V_G, V_H)|}{\text{max}\{|V_G|, |V_H|\}}$$

■ (5) Graph Edit distance Gao et al. '10 (survey)

$$d(G,H) = |V_G| + |V_H| - 2|V_G \cap V_H| + |E_G| + |E_H| - 2|E_G \cap E_H|$$

- Total cost of sequence of edit operations, to make two graphs isomorphic (costs may vary)
- Unique labeling of nodes reduces computation
 - otherwise an NP-complete problem
- Alternatives for weighted graphs

(5.5) Weighted Graph Edit distance

Kapsabelis et al. '07

$$d_2(G, H) = c[|V_G| + |V_H| - 2|V_G \cap V_H|] + \sum_{e \in E_G \cap E_H} |\beta_G(e) - \beta_H(e)|$$

$$+ \sum_{e \in E_G \setminus (E_G \cap E_H)} \beta_G(e) + \sum_{e \in E_H \setminus (E_G \cap E_H)} \beta_H(e)$$
edge weights

Non-linear cost functions

$$d_{3}(G, H) = c [|V_{G}| + |V_{H}| - 2|V_{G} \cap V_{H}|]$$

$$+ \sum_{e \in E_{G} \cap E_{H}} \frac{|(\beta_{G}(e) + \epsilon) - (\beta_{H}(e) + \epsilon)|^{2}}{(\min(\beta_{G}(e), \beta_{H}(e)) + \epsilon)^{2}}$$

$$+ \sum_{e \in E_{G} \setminus (E_{G} \cap E_{H})} (\beta_{G}(e) + \epsilon)^{2} + \sum_{e \in E_{H} \setminus (E_{G} \cap E_{H})} (\beta_{H}(e) + \epsilon)^{2}$$

- (6) Median Graph distance Dickinson et al. '04
 - Median graph of sequence (G_{n-L+1}, \ldots, G_n)

$$\tilde{G}_n = \arg\min_{G \in S} \sum_{i=n-L+1}^n d(G, G_i)$$

- $d(\tilde{G}_n, G_{n+1})$ for each graph G_{n+1} in sequence
- free to choose any distance function d
- (7) Modality distance

Kraetzl et al. 'o6

$$d(G,H) = \|\pi(G) - \pi(H)\|$$

$$A\pi = \rho\pi, \quad \pi > 0$$
 Perron vector

(8) Diameter distance

Gaston et al. '06

$$d(G,H) = \left| \sum_{v \in V_H} \operatorname{maxd}(H,v) - \sum_{v \in V_G} \operatorname{maxd}(G,v) \right|$$
 shortest distance

(9) Entropy distance

$$d(G, H) = -\sum_{e \in E_H} (\tilde{w}_e^H - \ln \tilde{w}_e^H) + \sum_{e \in E_G} (\tilde{w}_e^G - \ln \tilde{w}_e^G)$$
$$\tilde{w}_e^* = w_e^* / \sum_{e \in E_*} w_e^*$$

■ (10) Spectral distance
$$d(G, H) = \sqrt{\sum_{i=1}^{k} (\lambda_i - \mu_i)^2} \quad \text{Largest pos.} \\ \min\left\{\sum_{i=1}^{k} \lambda_i^2, \sum_{i=1}^{k} \mu_i^2\right\}} \quad \text{Laplacian}$$

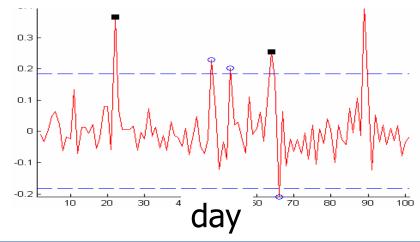
Metric	Vertices used?	Edges used?	Vertex weights used?	Edge weight s used?	Range	Value if graphs identical
Weight	No	Yes	No	Yes	[0,1]	0
MCS Weight	No	Yes	No	Yes	[0,1]	0
MCS Edge	No	Yes	No	No	[0,1]	0
MCS Vertex	Yes	No	No	No	[0,1]	0
Graph Edit	Yes	Yes	No	No	$[0,\infty)$	0
Median Edit	Yes	Yes	No	No	$[0,\infty)$	0
Modality	No	Yes	No	Yes	[0,1]	0
Diameter	Yes	Yes	No	No	$[0,\infty)$	0
Entropy	No	Yes	No	Yes	(-1,1)	0
Spectral	No	Yes	No	Yes	[0,1]	0

Graph distance to time series

- Time series of graph distances per dist. func.
- lacksquare ARMA(p,q) model for each time series
 - assumes stationary series, due to construction
- Anomalous time points: where residuals exceed a threshold

$$X_t = \alpha_1 X_{t-1} + \dots + \alpha_p X_{t-p} + \epsilon_t + \beta_1 \epsilon_{t-1} + \dots + \beta_q \epsilon_{t-q}$$

residuals



Graph distance to time series

F

$$MSE(m) = \sum_{i=1}^{m} (X_i - \bar{X}_L)^2 + \sum_{i=m+1}^{M} (X_i - \bar{X}_R)^2$$
 m

- change point: m with minimum MSE(m)
- randomized bootsrapping for confidence
- <u>CU</u>mulative <u>SUM</u>mation

series mean

$$C = (s_0, s_1, \dots, s_M)$$

$$s_0 = 0$$

$$s_k = s_{k-1} + X_k - \bar{X}$$

□ bootstrap $\triangle C = \max_{i=1,...,M} C - \min_{i=1,...,M} C$

Note: single feature to represent whole graphs

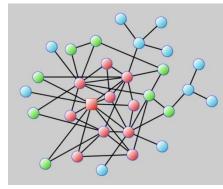
Scan statistics on graphs

For each "scan region"

Scan statistics framework

- compute locality statistic
- (11) Scan statistic = max of locality statistics

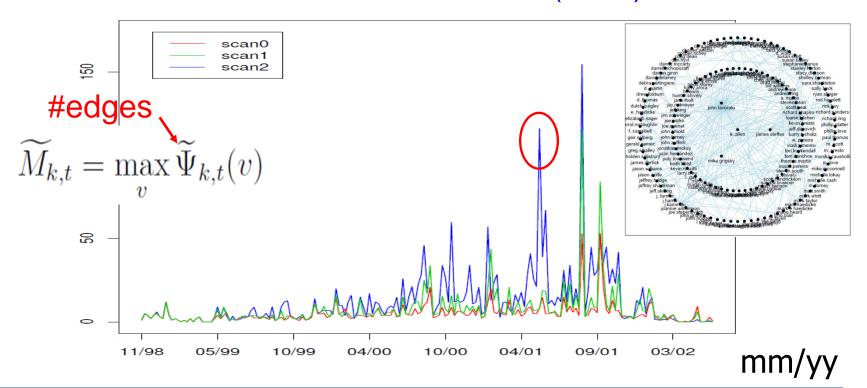
- For graph data
 - k-th order neighborhood
 - scan region: induced k-th order subgraph
 - locality stat.: e.g., #edges, density, domination #, ...
 - scale (k)-specific scan stat. $M_k(D) = \max_{v \in V(D)} \Psi_k(v)$



Scan statistics on graphs

Vertex-dependent normalized locality statistic

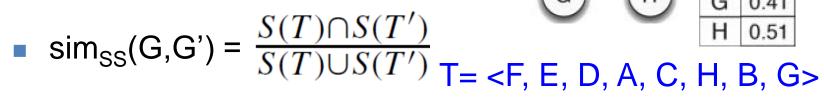
$$\widetilde{\Psi}_{k,t}(v) = \left(\Psi_{k,t}(v) - \widehat{\mu}_{k,t,\tau}(v)\right) / \max(\widehat{\sigma}_{k,t,\tau}(v), 1)$$
 mean and std in (t–tau) window

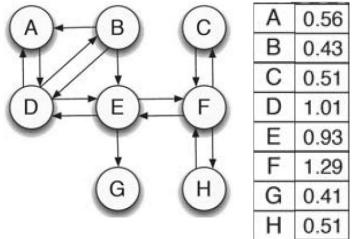


- *Note: sensitivity is a desired property
 - e.g. "high/low-quality" pages in Web graph
 - quality/importance: e.g., pagerank

• (12) Vertex ranking quality(v) rank(v)
$$sim_{VR}(G, G') = 1 - \frac{2\sum_{v \in V \cup V'} w_v \times (\pi_v - \pi'_v)^2}{D}$$

- (13) Sequence similarity
 - Depth-first-like sequencing with high-quality first
 Repeat
 - pick unvisited node with highest quality
 - visit highest quality unvisited neighbor, if any
 - Apply shingling
 - all k-length subsequences, i.e. shingles S(T)





- (14) Vector similarity
 - Compare weighted edge vectors
 - relative importance of an edge:

$$\gamma(u, v) = \frac{q_u \times \#outlinks(u, v)}{\sum_{\{v':(u, v') \in E\}} \#outlinks(u, v')}$$

Similarity over union of edges in G and G'

$$sim_{VS}(G, G') = 1 - \frac{\sum_{(u,v) \in E \cup E'} \frac{|\gamma(u,v) - \gamma'(u,v)|}{max(\gamma(u,v),\gamma'(u,v))}}{|E \cup E'|}$$

note: for edges not in G' $\gamma'(u, v) = 0$, and vice versa

- (15) Signature similarity
 - Transfer graph G to a set L of weighted features

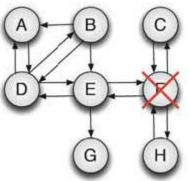
$$L = \{(t_i, w_i)\} \quad \text{e.g. } L(G) = \{(C, 0.51), (CF, 0.51), (F, 1.29), \\ \text{nodes/edges} \quad \text{quality} \quad \frac{(FC, 1.29 \times 0.5), (FH, 1.29 \times 0.5), \\ (H, 0.51), (HF, 0.51)\}.$$

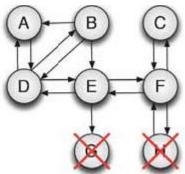
- Construct b-bit signature for G
 - For each t_i
 - randomly choose b entries from $\{-w_i, +w_i\}$
 - Sum all b-dimensional vectors into h
 - Set '+' entries to 1 and '-'s to 0

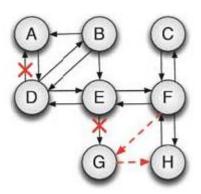
$$\square sim(L, L') = 1 - \frac{Hamming(h, h')}{b}$$

Missing connected subgraph

Missing random vertices Connectivity change







Vertex ranking

very good

bad

bad

Sequence similarity good

bad

very good

Vector similarity

very good

good

good

Signature similarity very good

very good

very good

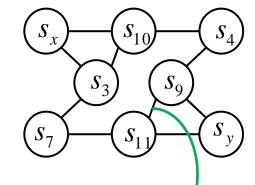
Part II: Outline

- Overview: Events in point sequences
 - Change detection in time series
 - Learning under concept drift

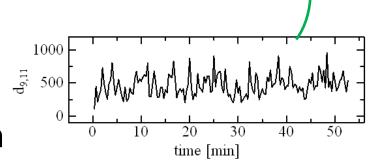
- Events in graph sequences
 - Change by graph distance
 - feature-based
 - structure-based
 - Change by graph connectivity
 - phase transition

Eigen-space-based events

Given a time-evolving graphIdentify faulty vertices



- Challenges
 - Large number of nodes,
 impractical to monitor each



- Edge weights are highly dynamic
- Anomaly defined collectively (different than "others")

Event: a "phase transition" of the graph (in overall relation between the edge weights)

"Summary feature" extraction

Definition of "activity" vector

$$\underline{\boldsymbol{u}}(t) \equiv \arg\max_{\tilde{\boldsymbol{u}}} \left\{ \tilde{\boldsymbol{u}}^T \underline{\mathsf{D}}(t) \tilde{\boldsymbol{u}} \right\} \quad \text{subject to } \tilde{\boldsymbol{u}}^T \tilde{\boldsymbol{u}} = 1$$
 activity vector at t adjacency matrix at t (symmetric, non-negative)

The above equation can be reduced to

$$\mathsf{D}(t)\tilde{\boldsymbol{u}} = \lambda \tilde{\boldsymbol{u}}.$$
 subject to $\tilde{\boldsymbol{u}}^T \tilde{\boldsymbol{u}} = 1$

→The principal eigenvector gives the summary of node "activity"

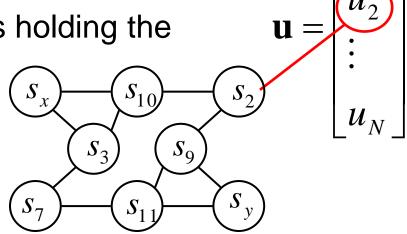
Activity feature

 $\boldsymbol{u}(t) \equiv \arg\max_{\tilde{\boldsymbol{u}}} \left\{ \tilde{\boldsymbol{u}}^T \mathsf{D}(t) \tilde{\boldsymbol{u}} \right\}$

- Why "activity"? (intuition)
 - If D₁₂ is large, then u₁ and u₂ should be large because of argmax (note: D is a positive matrix).
 - So, if s₁ actively links to other nodes at t, then the "activity" of s₁ should be large.

Also interpreted as "stationary state": probability that a node is holding the

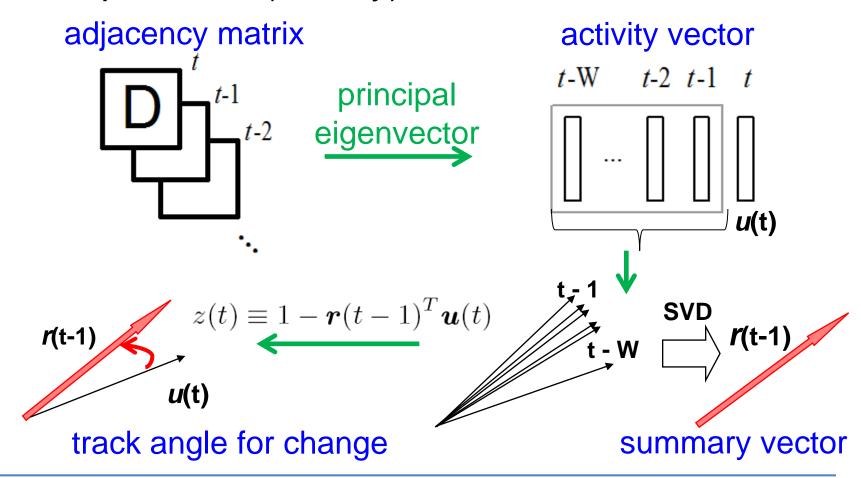
"control token"



 \mathcal{U}_1

Anomaly detection

 Problem reduced from a sequence of graphs to a sequence of (activity) vectors

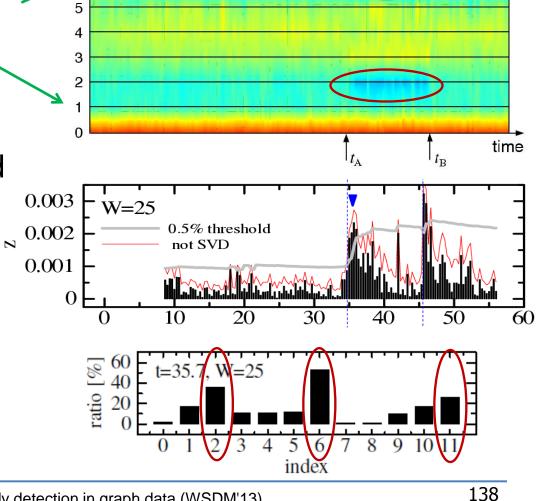


Experiment

Time evolution of activity scores effectively visualizes malfunction

Anomaly measure and online thresholding dynamically capture activity change

Nodes changing most can be attributed



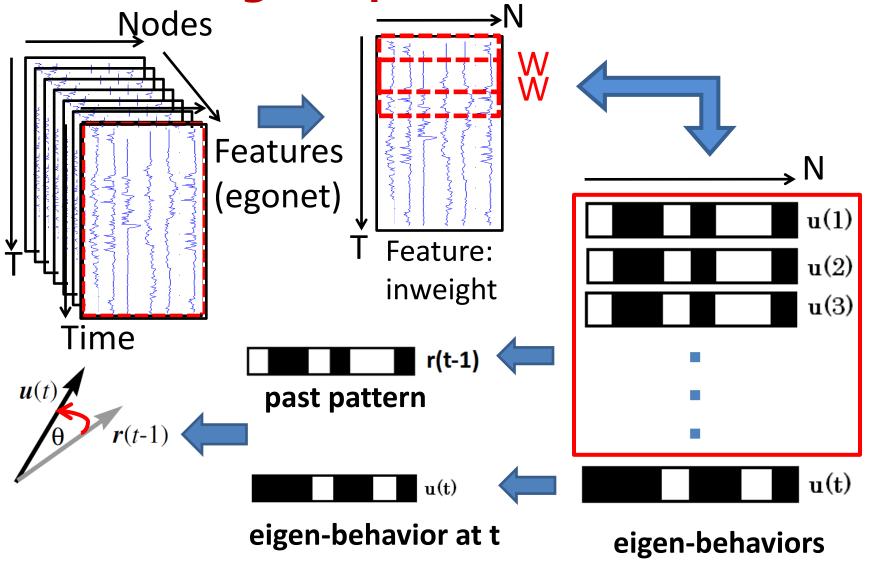
11

10

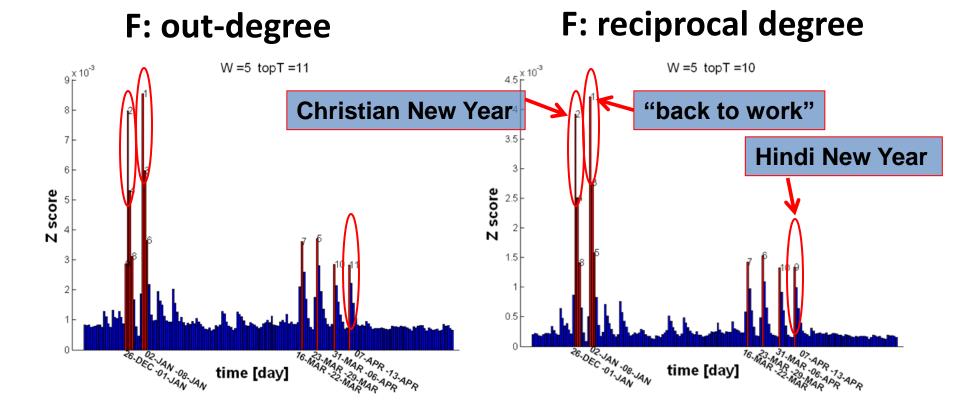
8

index

Feature/Eigen-space-based events

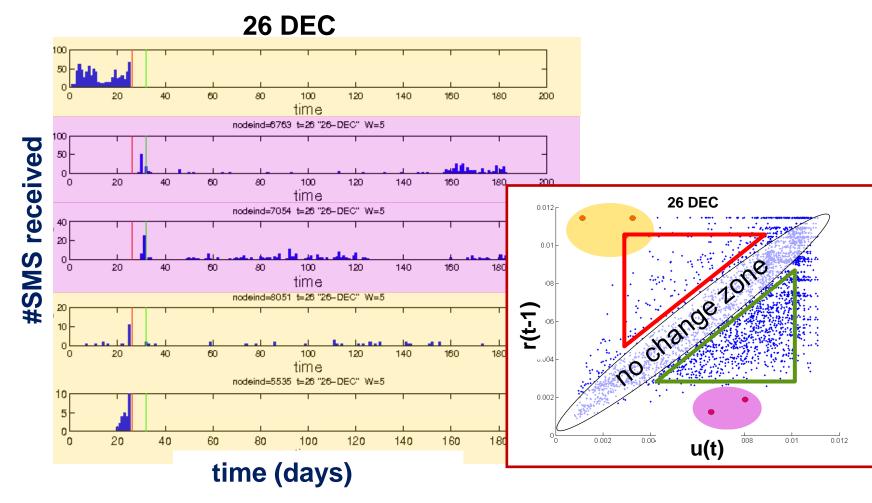


Change point detection



Event score Z over time

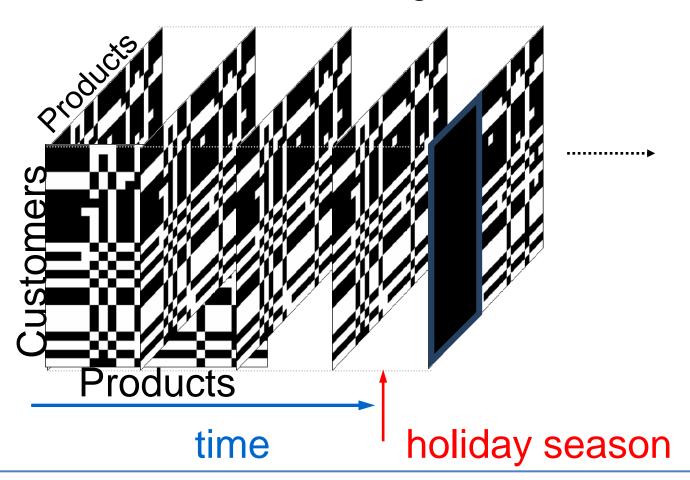
Change attribution



Time series of top 5 nodes with highest ratio index

Community-based events

 Main idea: monitor community structure and alert event when it changes

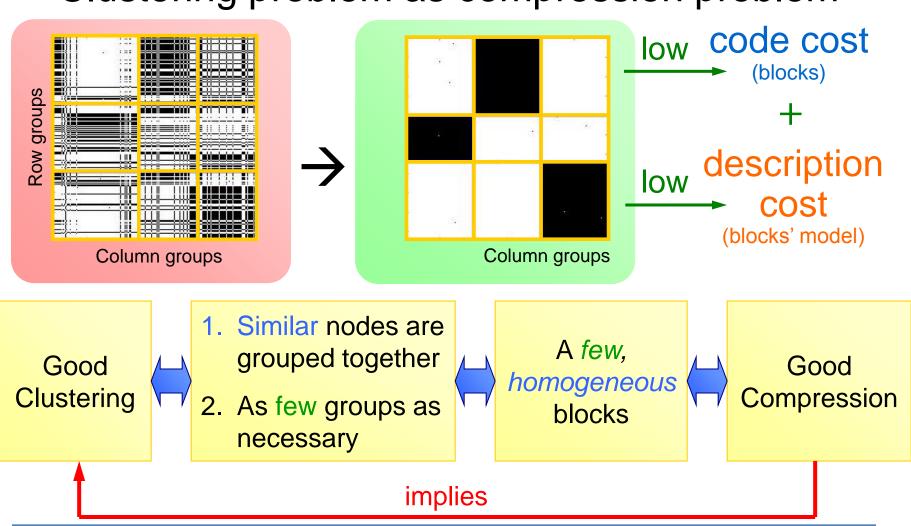


Community-based events

- Many graph clustering/partitioning algorithms
 - METIS Karypis et al. '95
 - Spectral Clustering Shi & Malik 'oo Ng et al.'02
 - Girvan-Newma '03
 - Co-clustering
 Dhillon et al. '03
 Chakrabarti '04
 - **...**
- Challenge
 - distance measure between clusterings

Community detection

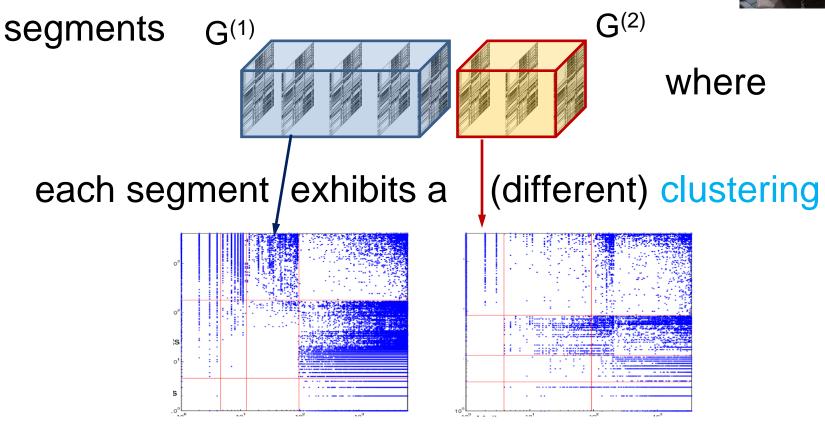
Clustering problem as compression problem



Sun et al. '07

Community-based events

Goal: partition the graph sequence into

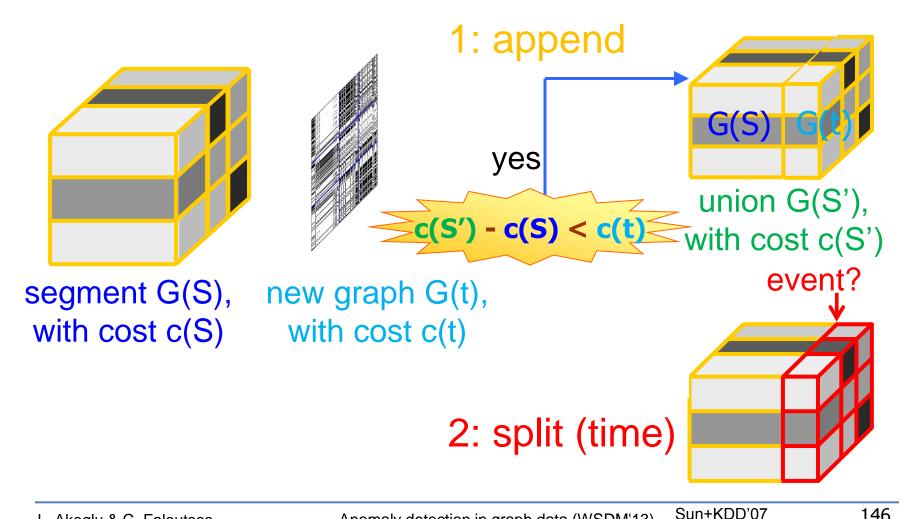


Q: when does a new segment (=event) emerge?

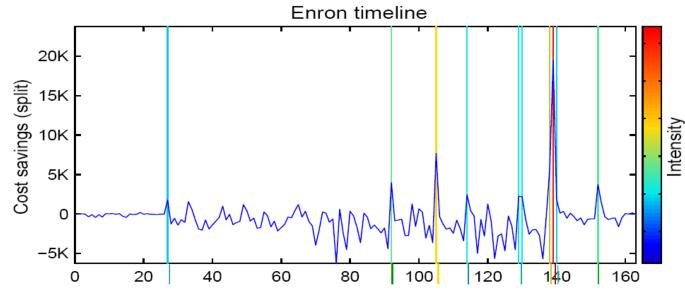
145

Change detection

Guiding principle: encoding cost benefit



Community changes in Enron



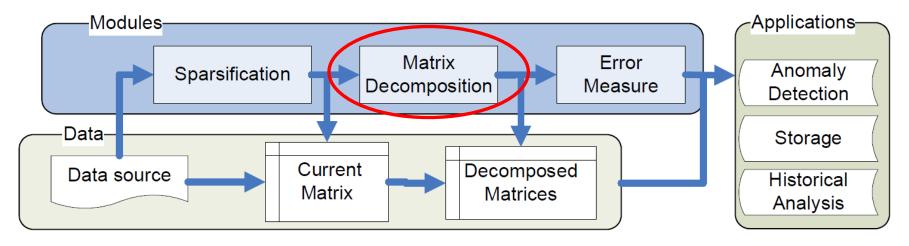
- 34K email addresses
- 165 weeks
- ~2M emails

Key changepoints correspond to key events

Bit-cost can quantify event "intensity"

Reconstruction-based events

General Framework



Network forensics

- □ Sparsification → load shedding
- Matrix decomposition summarization
- □ Error Measure → anomaly detection

Matrix decomposition

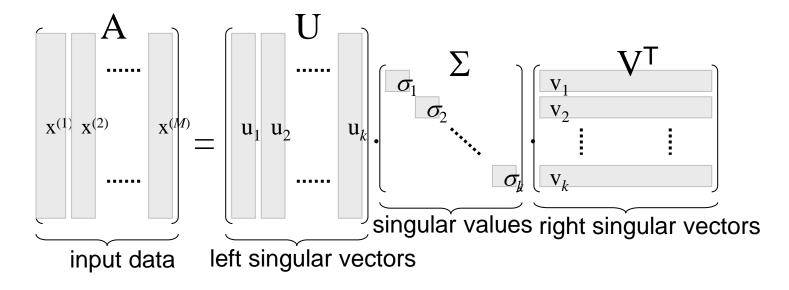
Goal: summarize a given graph
 decompose adjacency matrix
 into smaller components

- 1800's,

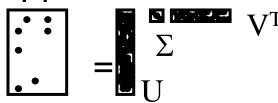
 1. Singular Value Decomposition (SVD) PCA, LSI, ...
- 2. CUR decomposition Drineas et al. '05
- 3. Compact Matrix Decomposition (CMD) Sun et al. '07

1. Singular Value Decomposition

$A = U\Sigma V^{T}$

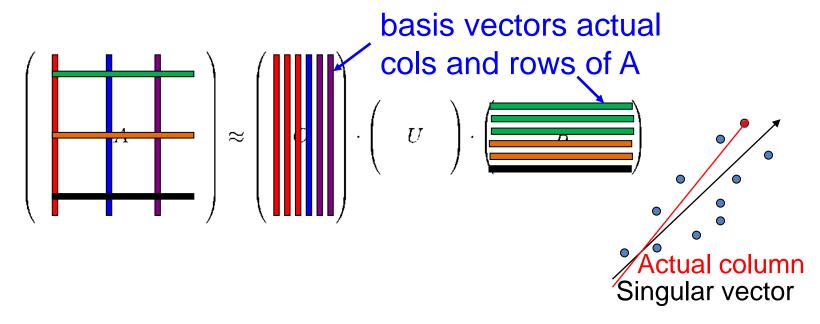


- Optimal low-rank approximation
- Lack of Sparsity



2. CUR decomposition

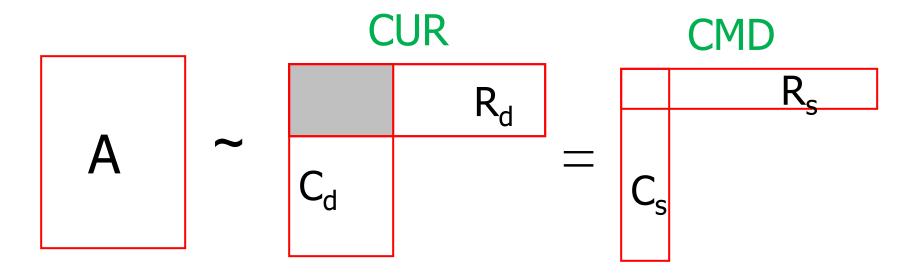
C, U, R for small ||A-CUR||



- Provably good approximation to SVD
- + Sparse basis (A is sparse)
- Space overhead (duplicate bases)

3. Compact Matrix Decomposition

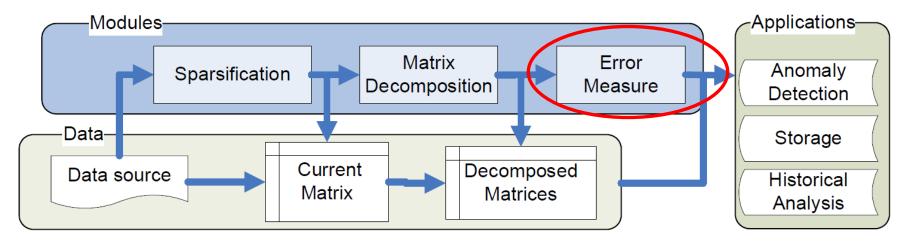
C, U, R for small ||A-CUR||, and No duplicates in C and R



- + Sparse basis (A is sparse)
- + Efficiency in space and computation time

Reconstruction-based events

General Framework



Network forensics

- □ Sparsification → load shedding
- Matrix decomposition summarization
- □ Error Measure → anomaly detection

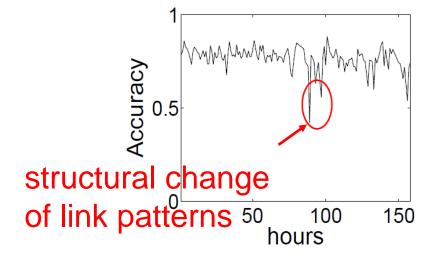
Error measure: reconstruction

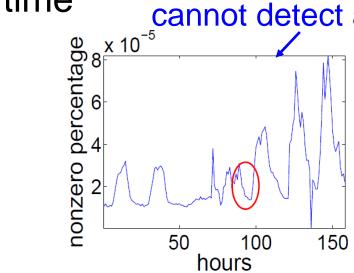
accuracy = 1- Relative Sum-Square-Error

$$\mathsf{RSSE} = \frac{\sum_{i,j} (\mathbf{A}(i,j) - \tilde{\mathbf{A}}(i,j))^2}{\sum_{i,j} (\mathbf{A}(i,j)^2)}$$

Monitor accuracy over time

Volume monitoring cannot detect anomaly



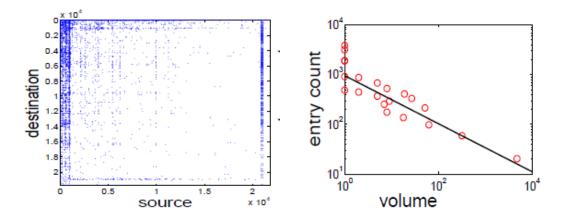


 Also, high reconstruction error of rows/cols for static snapshot anomalies

Practical issue 1: non-linear scaling

Issue: skewed entries in A matrix

few "heavy" rows/cols dominate (CUR/CMD) decomposition poor anomaly discovery



Solution: rescale entries x by log(x+1)

Practical issue 2: fast approx. error

- Issue: Direct computation of SSE is costly; norm of two big matrices, \mathbf{A} and $\mathbf{A} \tilde{\mathbf{A}}$, are needed.
- Solution: approximated error

$$\tilde{e} = \frac{m \cdot n}{|S|} \sum_{(i,j) \in S} (\mathbf{A}(i,j) - \mathbf{C}_{(i)} \mathbf{U} \mathbf{R}^{(j)})^2$$

$$\begin{pmatrix} & & & \\ & A & & \\ & & \end{pmatrix} \approx \begin{pmatrix} & & \\ & C & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & & \\ & U & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & & \\ & & & \\ & & & \end{pmatrix}$$

Part II: References (graph series)

- Shoubridge P., Kraetzl M., Wallis W. D., Bunke H. <u>Detection of Abnormal Change in a Time Series of Graphs</u>. Journal of Interconnection Networks (JOIN) 3(1-2):85-101, 2002.
- Shoubridge, P. Kraetzl, M. Ray, D. <u>Detection of abnormal change in dynamic networks</u>. Information, Decision and Control, 1999.
- Kelly Marie Kapsabelis, Peter John Dickinson, Kutluyil Dogancay.
 <u>Investigation of graph edit distance cost functions for detection of network anomalies</u>. ANZIAM J. 48 (CTAC2006) pp.436–449, 2007.
- Panagiotis Papadimitriou, Ali Dasdan, Hector Garcia-Molina. Web graph similarity for anomaly detection. J. Internet Services and Applications (JISA) 1(1):19-30 (2010)
- B. Pincombe. <u>Anomaly Detection in Time Series of Graphs using ARMA Processes.</u> ASOR BULLETIN, 24(4):2, 2005.
- Gao, Xinbo and Xiao, Bing and Tao, Dacheng and Li, Xuelong. <u>A survey of graph edit distance</u>. Pattern Anal. and App.s 13 (1), pp. 113-129. 2010.
- Horst Bunke, Peter J. Dickinson, Andreas Humm, Christophe Irniger, Miro Kraetzl: <u>Computer Network Monitoring and Abnormal Event Detection Using</u> <u>Graph Matching and Multidimensional Scaling</u>. Industrial Conference on Data Mining 2006:576-590

Part II: References (graph series) (2)

- C.E. Priebe, J.M. Conroy, D.J. Marchette, and Y. Park. <u>Scan Statistics on Enron Graphs</u>. Computational & Mathematical Organization Theory, 11(3):229–247, 2005.
- Ide, T. and Kashima, H., <u>Eigenspace-Based Anomaly Detection in Computer Systems</u>. KDD, 2004.
- L. Akoglu, M. McGlohon, C. Faloutsos. <u>Event Detection in Time Series of Mobile Communication Graphs</u>. Army Science Conference, 2010.
- Sun, Jimeng and Xie, Yinglian and Zhang, Hui and Faloutsos, Christos. <u>Less</u>
 <u>is more: Compact matrix representation of large sparse graphs</u>. ICDM 2007.
- Sun, Jimeng and Tao, Dacheng and Faloutsos, Christos. <u>Beyond streams</u> and graphs: <u>dynamic tensor analysis</u>. KDD 2006: 374-383
- Sun J., Faloutsos C., Papadimitriou S., Yu P. S. <u>GraphScope: parameter-free</u> mining of large time-evolving graphs. KDD, 2007.
- R. Rossi, B. Gallagher, J. Neville, and K. Henderson. <u>Role-Dynamics: Fast Mining of Large Dynamic Networks</u>. 1st Workshop on Large Scale Network Analysis, WWW, 2012.
- Cemal Cagatay Bilgin, Bülent Yener. <u>Dynamic Network Evolution: Models</u>, <u>Clustering, Anomaly Detection</u>. Survey, 2008.

Tutorial Outline

- Motivation, applications, challenges
- Part I: Anomaly detection in static data
 - Overview: Outliers in clouds of points
 - Anomaly detection in graph data
- Part II: Event detection in dynamic data
 - Overview: Change detection in time series
 - Event detection in graph sequences
- Part III: Graph-based algorithms and apps
 - Algorithms: relational learning
 - Applications: fraud and spam detection

Coffee break...

